Tugas 4.A
1. Hukum Komutatif
a. A+B=B+A
A | B | A+B | B+A | A+B=B+A |
0
0
1
1 | 0
1
0
1 | 0
1
1
1 | 0
1
1
1 | √
√
√
√ |
b. AB=BA
A | B | AB | BA | AB=BA |
0
0
1
1 | 0
1
0
1 | 0
0
0
1 | 0
0
0
1 | √
√
√
√ |
2. Hukum Asosiatif
a. (A+B)+C = A+(B+C)
A | B | C | A+B | B+C | (A+B)+C | A+(B+C) | (A+B)+C = A+(B+C) |
0
0
0
0
1
1
1
1 | 0
0
1
1
0
0
1
1 | 0
1
0
1
0
1
0
1 | 0
0
1
1
1
1
1
1 | 0
1
1
1
0
1
1
1 | 0
1
1
1
1
1
1
1 | 0
1
1
1
1
1
1
1 | √
√
√
√
√
√
√
√ |
b. (AB)C = A(BC)
A | B | C | AB | BC | (AB)C | A(BC) | (AB)C = A(BC) |
0
0
0
0
1
1
1
1 | 0
0
1
1
0
0
1
1 | 0
1
0
1
0
1
0
1 | 0
0
0
0
0
0
0
1 | 0
0
0
1
0
0
0
1 | 0
0
0
0
0
0
0
1 | 0
0
0
0
0
0
0
1 | √
√
√
√
√
√
√
√ |
3. Hukum Distributif
a. A(A+C) = AB+AC
A | B | C | BC | A+B | AC | A(B+C) | AB+AC |
0 0 0 0 1 1 1 1 | 0 0 1 1 0 0 1 1 | 0 1 0 1 0 1 0 1 | 0 1 1 1 0 1 1 1 | 0 0 0 0 0 0 1 1 | 0 0 0 0 0 1 0 1 | 0 0 0 0 0 1 1 1 | 0 0 0 0 0 1 1 1 |
b. A+(BC) = (A+B)(A+C)
A | B | C | BC | A+B | A+C | A+(BC) | (A+B)(A+C) |
0 0 0 0 1 1 1 1 | 0 0 1 1 0 0 1 1 | 0 1 0 1 0 1 0 1 | 0 0 0 1 0 0 0 1 | 0 0 1 1 1 1 1 1 | 0 1 0 1 1 1 1 1 | 0 0 0 1 1 1 1 1 | 0 0 0 1 1 1 1 1 |
4. Hukum Identity
a. A+A = A
A | A+A | A+A=A |
0 0 1 1 | 0 0 1 1 | √ √ √ √ |
b. AA = A
A | AA | AA=A |
0 0 1 1 | 0 0 1 1 | √ √ √ √ |
5. a. AB+AB = A
A | B | B(invers) | AB | AB(inverse) | A |
0 0 1 1 | 0 1 0 1 | 1 0 1 0 | 0 0 0 1 | 0 0 1 0 | 0 0 1 1 |
b. (A+B)(A+B) = A
A | B | B(invers) | A+B | A+B(inverse) | A |
0 0 1 1 | 0 1 0 1 | 1 0 1 0 | 0 1 1 1 | 1 0 1 1 | 0 0 1 1 |
6. Hukum Redudansi
a. A+AB = A
A | B | AB | A+AB |
0 0 1 1 | 0 1 0 1 | 0 1 1 1 | 0 0 1 1 |
b. A+AB = A
A | B | A+B | A(A+B) |
0 0 1 1 | 0 1 0 1 | 0 1 1 1 | 0 0 1 1 |
7. a. 0+A = A
A | 0+A |
0 0 1 1 | 0 0 1 1 |
b. 0A = 0
A | 0A | 0 |
0 0 1 1 | 0 0 0 0 | 0 0 0 0 |
8. a. 1+A = 1
A | 1+A | 1 |
0 0 1 1 | 1 1 1 1 | 1 1 1 1 |
b. 1A = A
A | 1A |
0 0 1 1 | 0 0 1 1 |
9. Theorema De Morgan
a.
A | B | A(invers) | B(inverse) | A+B | (A+B)inverse | A(inverse)B(inverse) |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
b.
A | B | A(invers) | B(inverse) | AB | (AB)inverse | A(inverse)+B(inverse) |
0 | 0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |